Impact of Climate Change on Soil Erosion in the Lam Phra Phloeng Watershed

Author:

Sirikaew Uba,Seeboonruang Uma,Tanachaichoksirikun PinitORCID,Wattanasetpong Jatuwat,Chulkaivalsucharit Virun,Chen WalterORCID

Abstract

Soil erosion plays a vital role in reducing reservoir capacity. The Lam Phra Phloeng (LPP) dams were built for flood protection and irrigation. However, they have experienced reservoir sedimentation, and the capacity of the reservoir has decreased. The surrounding soil surface was easily eroded and transported by heavy rainfall and surface runoff to streams and eventually into the reservoir. Understanding this soil erosion and sedimentation is necessary for preventing further decline of reservoir capacity and water management. This research aims to estimate long-term average annual soil erosion and predict sediment yield in the reservoir due to climate change. The methodology is determined soil loss parameters and sediment yield using the Universal Soil Loss Equation (USLE) with the Sediment Delivery Ratio (SDR). The USLE and SDR methods differed from field data, with an average absolute error of 4.0%. The Global Climatic Model, Institute Pierre Simon Laplace-Climate Model version 5A (IPSL-CM5A-MR), with Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5, was downscaled and analyzed to forecast future rainfall in the watershed. The high intensity of rainfall contributed to higher soil erosion, in RCP 8.5. Interestingly, the high and very high-risk areas increased, but the moderate risk area declined, indicating that the moderate risk area should be a priority in land management. However, the heavy rainfall and high slope gradient led to a slight increase in the soil erosion in some areas because the land covers were evergreen and deciduous forest. The prediction of sediment yield was positively correlated with the intensity of rainfall in the central part of the watershed, because the rainfall and runoff led the sediment to the river and streams, indicating that the land cover should be managed to prevent capacity decline.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3