Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates

Author:

Kim Tae-Wook,Lee Jong-Sung,Kim Young-Cheon,Joo Young-Chang,Kim Byoung-JoonORCID

Abstract

As the technology of flexible electronics has remarkably advanced, the long-term reliability of flexible devices has attracted much attention, as it is an important factor for such devices in reaching real commercial viability. To guarantee the bending fatigue lifetime, the exact evaluation of bending strain and the change in electrical resistance is required. In this study, we investigated the bending strains of Cu thin films on flexible polyimide substrates with different thicknesses using monolayer and bilayer bending models and monitored the electrical resistance of the metal electrode during a bending fatigue test. For a thin metal electrode, the bending strain and fatigue lifetime were similar regardless of substrate thickness, but for a thick metal film, the fatigue lifetime was changed by different bending strains in the metal electrode according to substrate thickness. To obtain the exact bending strain distribution, we conducted a finite-element simulation and compared the bending strains of thin and thick metal structures. For thick metal electrodes, the real bending strain obtained from a bilayer model or simulation showed values much different from those from a simple monolayer model. This study can provide useful guidelines for developing highly reliable flexible electronics.

Funder

Basic project

a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (MSIP) of the Korea Government

Publisher

MDPI AG

Subject

General Materials Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3