Connection between Carbon Incorporation and Growth Rate for GaN Epitaxial Layers Prepared by OMVPE

Author:

Ciarkowski TimothyORCID,Allen NoahORCID,Carlson EricORCID,McCarthy Robert,Youtsey Chris,Wang Jingshan,Fay PatrickORCID,Xie Jinqiao,Guido LouisORCID

Abstract

Carbon, a compensator in GaN, is an inherent part of the organometallic vapor phase epitaxy (OMVPE) environment due to the use of organometallic sources. In this study, the impact of growth conditions are explored on the incorporation of carbon in GaN prepared via OMVPE on pseudo-bulk GaN wafers (in several cases, identical growths were performed on GaN-on-Al2O3 templates for comparison purposes). Growth conditions with different growth efficiencies but identical ammonia molar flows, when normalized for growth rate, resulted in identical carbon incorporation. It is concluded that only trimethylgallium which contributes to growth of the GaN layer contributes to carbon incorporation. Carbon incorporation was found to decrease proportionally with increasing ammonia molar flow, when normalized for growth rate. Ammonia molar flow divided by growth rate is proposed as a reactor independent predictor of carbon incorporation as opposed to the often-reported input V/III ratio. A low carbon concentration of 7.3 × 1014 atoms/cm3 (prepared at a growth rate of 0.57 µm/h) was obtained by optimizing growth conditions for GaN grown on pseudo-bulk GaN substrates.

Funder

Advanced Research Projects Agency - Energy

Publisher

MDPI AG

Subject

General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3