The Possibility of Implementation of West Ukrainian Paleogene Glauconite–Quartz Sands in the Building Industry: A Case Study

Author:

Trach YuliiaORCID,Melnychuk Victor,Stadnyk OleksandrORCID,Trach RomanORCID,Bujakowski FilipORCID,Kiersnowska Agnieszka,Rutkowska GabrielaORCID,Skakun Leonid,Szer JacekORCID,Koda EugeniuszORCID

Abstract

The integrated use of minerals facilitates the reduction in the impact of mining on the environment. Many industries are in need of quartz sand in huge quantities. Quality requirements for quartz sand often refer to a high percentage of SiO2 and low content of Fe2O3, as well as the absence of clay impurities. The extraction of conditioned quartz sands and their close geographic location to consumers are economically profitable. Due to their wide distribution in Ukraine and their subsurface occurrence, glauconite-bearing Paleogene sands attract special attention. It has been experimentally confirmed that such sands are capable of dry magnetic separation. As a result of dry magnetic separation, three magnetic fractions and a nonmagnetic fraction were isolated. Glauconite was the dominant mineral in the magnetic fraction at 0.8 Tl. Their content was 5.1% and 2.8% in sand, respectively. The nonmagnetic fractions obtained from two studied samples were at 80.4 and 80.7%, respectively. XRF analyses showed that in each nonmagnetic fraction the content of SiO2 is at 96.9 wt.% and 93.7 wt.%, and Fe2O3 at 0.26 wt.% and 0.87 wt.%, respectively. In XRD, the nonmagnetic fractions contained 94.8% and 93.1% of sand, and 0.8% and 1.9% of glauconite, respectively. The values of the fineness moduli for the nonmagnetic fractions were 1.10 and 1.85. The size classes of quartz sands were 0.63 + 0 mm and −0.8 + 0 mm. Compared with current Ukrainian standards, the nonmagnetic fractions can be used in the building industry as well as in the manufacturing of glass, with the addition of a certain amount of glass from recycling.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3