AIS for Malware Detection in a Realistic IoT System: Challenges and Opportunities

Author:

Alrubayyi Hadeel1ORCID,Goteng Gokop1ORCID,Jaber Mona1ORCID

Affiliation:

1. School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK

Abstract

With the expansion of the digital world, the number of Internet of things (IoT) devices is evolving dramatically. IoT devices have limited computational power and a small memory. Consequently, existing and complex security methods are not suitable to detect unknown malware attacks in IoT networks. This has become a major concern in the advent of increasingly unpredictable and innovative cyberattacks. In this context, artificial immune systems (AISs) have emerged as an effective malware detection mechanism with low requirements for computation and memory. In this research, we first validate the malware detection results of a recent AIS solution using multiple datasets with different types of malware attacks. Next, we examine the potential gains and limitations of promising AIS solutions under realistic implementation scenarios. We design a realistic IoT framework mimicking real-life IoT system architectures. The objective is to evaluate the AIS solutions’ performance with regard to the system constraints. We demonstrate that AIS solutions succeed in detecting unknown malware in the most challenging conditions. Furthermore, the systemic results with different system architectures reveal the AIS solutions’ ability to transfer learning between IoT devices. Transfer learning is a pivotal feature in the presence of highly constrained devices in the network. More importantly, this work highlights that previously published AIS performance results, which were obtained in a simulation environment, cannot be taken at face value. In reality, AIS’s malware detection accuracy for IoT systems is 91% in the most restricted designed system compared to the 99% accuracy rate reported in the simulation experiment.

Publisher

MDPI AG

Subject

Critical Care Nursing,Pediatrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3