Post-Quantum Cryptosystems for Internet-of-Things: A Survey on Lattice-Based Algorithms

Author:

Asif Rameez

Abstract

The latest quantum computers have the ability to solve incredibly complex classical cryptography equations particularly to decode the secret encrypted keys and making the network vulnerable to hacking. They can solve complex mathematical problems almost instantaneously compared to the billions of years of computation needed by traditional computing machines. Researchers advocate the development of novel strategies to include data encryption in the post-quantum era. Lattices have been widely used in cryptography, somewhat peculiarly, and these algorithms have been used in both; (a) cryptoanalysis by using lattice approximation to break cryptosystems; and (b) cryptography by using computationally hard lattice problems (non-deterministic polynomial time hardness) to construct stable cryptographic functions. Most of the dominant features of lattice-based cryptography (LBC), which holds it ahead in the post-quantum league, include resistance to quantum attack vectors, high concurrent performance, parallelism, security under worst-case intractability assumptions, and solutions to long-standing open problems in cryptography. While these methods offer possible security for classical cryptosytems in theory and experimentation, their implementation in energy-restricted Internet-of-Things (IoT) devices requires careful study of regular lattice-based implantation and its simplification in lightweight lattice-based cryptography (LW-LBC). This streamlined post-quantum algorithm is ideal for levelled IoT device security. The key aim of this survey was to provide the scientific community with comprehensive information on elementary mathematical facts, as well as to address real-time implementation, hardware architecture, open problems, attack vectors, and the significance for the IoT networks.

Publisher

MDPI AG

Subject

General Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3