Author:
Xin Jiang,Zhang Xinchang,Zhang Zhiqiang,Fang Wu
Abstract
Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on traditional machine learning algorithms, which are complex and computational because of impervious surfaces such as roads and buildings that are discernible in the images. Given the above problems, we propose a new method to extract the road network from remote sensing images using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of dense connection units and skips connections, which strengthens the fusion of different scales by connections at various network layers. The performance of the advanced method is validated on two datasets of high-resolution images by comparison with three classical semantic segmentation methods. The experimental results show that the method can be used for road extraction in complex scenes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
General Earth and Planetary Sciences
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献