Quantitative Evaluation on Valve Leakage of Reciprocating Compressor Using System Characteristic Diagnosis Method

Author:

Han Liubang,Jiang Kuosheng,Wang Qidong,Wang Xuanyao,Zhou Yuanyuan

Abstract

High impact and strong noise complicate the response of reciprocating compressor (RC). It requires a complex signal processing method that is a single response-based or excitation-based fault diagnosis method applied to RC valve leakage fault diagnosis. This paper proposes a quantitative diagnosis method of RC valve leakage that is based on system characteristic diagnosis method. First, the current signal of the RC induction motor and the cylinder vibration signal are introduced as the excitation and response signals, the mathematical model of the RC motor current is established, and the influence mechanism of the valve leakage on the RC vibration is analyzed. Subsequently, the ensemble empirical mode decomposition and comb filter are respectively used to extract the fault characteristic information of excitation signal and response signal to obtain the excitation condition indicators (CIs), response CIs, and system CIs. Finally, the support vector machine based on the obtained CIs classified the valve leakage failure patterns of different severity, and a fault diagnoser was constructed for the quantitative diagnosis of valve leakage fault. The results of experiment and application proved that the proposed method could realize the quantitative diagnosis of RC valve leakage fault while using simple signal processing technology.

Funder

National Natural Science Foundation Project in China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3