A network structure for industrial process fault diagnosis based on hyper feature extraction and stacked LSTM
Author:
Publisher
Elsevier BV
Reference34 articles.
1. Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems;Amiruddin;Neural Comput. Appl.,2020
2. Bidirectional deep recurrent neural networks for process fault classification;Chadha;ISA Trans.,2021
3. MSWR-LRCN: A new deep learning approach to remaining useful life estimation of bearings;Chen;Control Eng. Pract.,2022
4. Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks;Cho;Renew. Energy,2021
5. Fault diagnosis of multi-channel data by the CNN with the multilinear principal component analysis;Guo;Measurement,2021
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust statistical industrial fault monitoring: A machine learning-based distributed CCA and low frequency control charts;Chemical Engineering Science;2024-11
2. Fault diagnosis of industrial process using attention mechanism with 3DCNN-LSTM;Chemical Engineering Science;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3