The Microstructural Difference and Its Influence on the Ballistic Impact Behavior of a Near β-Type Ti5.1Al2.5Cr0.5Fe4.5Mo1.1Sn1.8Zr2.9Zn Titanium Alloy

Author:

Zhu Xinjie,Fan Qunbo,Wang Duoduo,Gong Haichao,Yu Hong,Yuan Jingjiu

Abstract

In this work, a near β-type Ti5.1Al2.5Cr0.5Fe4.5Mo1.1Sn1.8Zr2.9Zn alloy was hot-rolled at the temperature of 800–880 °C with a thickness reduction of 87.5% and then heat-treated with the strategy of 880 °C/1 h/air cooling (AC) + 650 °C/3 h/AC. The microstructure difference between the hot-rolled and heat-treated titanium alloys and its influence on the ballistic impact behavior of the hot-rolled and heat-treated titanium alloys were analyzed. The microstructural investigation revealed that the average size of the acicular secondary α phase (αs) dropped from 75 to 42 nm, and the corresponding amount of this phase increased significantly after heat treatment. In addition, the dislocation density of the α and β phases decreased from 0.3340 × 1015/m2 and 4.6746 × 1015/m2 for the hot-rolled titanium alloy plate to 0.2806 × 1015/m2 and 1.8050 × 1015/m2 for the heat-treated one, respectively. The high strength of the heat-treated titanium alloy was maintained, owing to the positive contribution of the acicular secondary α phase. Furthermore, the critical fracture strain increased sharply from 19.9% for the hot-rolled titanium alloy plate to 23.1% for the heat-treated one, thereby overcoming (to some extent) the constraint of the strength–ductility trade-off. This is mainly attributed to the fact that the dislocation density and the difference between the dislocation densities of the α and β phases decreased substantially, and deformation localization was effectively suppressed after heat treatment. Damage to the hot-rolled and heat-treated titanium alloy plates after the penetration of a 7.62 mm ordinary steel core projectile at a distance of 100 m was assessed via industrial computer tomography and microstructure observation. The results revealed that a large crack (volume: 2.55 mm3) occurred on the rear face and propagated toward the interior of the hot-rolled titanium alloy plate. The crack tip was connected to a long adiabatic shear band with a depth of 3 mm along the thickness direction. However, good integrity of the heat-treated titanium alloy plate was maintained, owing to its excellent deformation capability. Ultimately, the failure mechanism of the hot-rolled and heat-treated titanium alloy plates was revealed by determining the crack-forming reasons in these materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3