Author:
Jiang Haiyang,Zhang Jianyang,Xie Bijun,He Zhangxun,Zhang Hao,Wang Bing,Xu Bin,Wu Yuxi,Sun Mingyue
Abstract
The impact toughness of a TA31 titanium alloy cylindrical shell was investigated systemically after ring rolling. The impact toughness of specimens with different notch orientations shows obvious anisotropy. The microstructure of the cylindrical shell and the impact fracture were characterized by an optical microscope and scanning electron microscope. The results show that cracks are easier to propagate in the equiaxed α phase than the elongated α phase. This is because the expanding cracking path in the equiaxed α phase is shorter than that in the elongated α phase, and thereby the cracks are easier to propagate in the equiaxed α phase than the elongated α phase. More specifically, the α phase on the RD-TD plane was obviously isotropic, which makes it easy for the cracks to propagate along α grains in the same direction. However, the α phase on the RD-ND plane has a layered characteristic, and the direction of the α phase varies from layer to layer, thus it requires higher energy for cracks to propagate across this layered α phase. Therefore, the cracks propagating in the same α phase orientation take easier than that in the layered α phase, so it has lower impact toughness.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
National Science and Technology Major Project of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献