Affiliation:
1. Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
2. College of Resources and Environment, Southwest University, Chongqing 400716, China
Abstract
Global warming has driven the expansion of cultivated land to high-altitude areas. Intensive vegetable production, which is generally considered to be a high economic value and high environmental risk system, has expanded greatly in high-altitude mountainous areas of China. However, the environmental cost of vegetable production in these areas is poorly understood. In this study, pepper production at low (traditional pepper production area) and high (newly expanded area) altitudes were investigated in Shizhu, a typical pepper crop area. The output and environmental cost at the two altitudes were identified. the influence of resource inputs, climate, and soil properties on pepper production was evaluated. There were obvious differences in output and environmental cost between the two altitudes. High-altitude pepper production achieved a 16.2% lower yield, and had a higher fertilizer input, resulting in a 22.3% lower net ecosystem economic benefit (NEEB), 23.0% higher nitrogen (N) footprint and 24.0% higher carbon (C) footprint compared to low-altitude farming. There is potential for environmental mitigation with both high- and low-altitude pepper production; Compared to average farmers, high-yield farmers groups reduced their N and C footprints by 16.9–24.8% and 18.3–25.2%, respectively, with 30.6–34.1% higher yield. A large increase in yield could also be achieved by increasing the top-dress fertilizer rate and decreasing the plant density. Importantly, high-altitude pepper production was achieved despite less advanced technology and inferior conditions (e.g., a poor road system and uneven fields). It provides a reference for the study of the environmental cost of other high-altitude regions or other crop systems at high-altitude areas.
Funder
Chongqing science and Technology Bureau
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献