Historical nitrogen fertilizer use in China from 1952 to 2018

Author:

Yu ZhenORCID,Liu Jing,Kattel GiriORCID

Abstract

Abstract. China ranks in the highest position for nitrogen (N) fertilizer consumption in the world. Although N fertilizer use has greatly contributed to the China's food production, this has also caused an unprecedented alteration in the biogeochemical cycles and endangered terrestrial and aquatic ecosystems. Existing use of N fertilizers in China, as shown by digital maps, is usually coarse in resolution and intermittently covered with a biased gridded dataset. Here, we have reconstructed a historical, annual N fertilizer use dataset in China and resampled it to 5 km×5 km resolution, covering the period from 1952 to 2018 by integrating improved cropland maps. Results showed that most of the N input was directly applied as N-only fertilizer, while the contribution from compound fertilizers has ranged between 16 % and 24 % since 1980. The national total N fertilizer input increased from 0.06 Tg N yr−1 (0.05 g N m−2 yr−1) in 1952 to 31.15 Tg N yr−1 (18.83 g N m−2 yr−1) in 2014 and then decreased to 28.31 Tg N yr−1 (17.06 g N m−2 yr−1) in 2018. Despite the total N input decreasing by 9.1 % (2.84 Tg N yr−1) from 2014 to 2018, the N input from compound fertilizers has increased by 6 % (0.43 Tg N yr−1) during the corresponding period. The previous Food and Agriculture Organization (FAO) data-based N fertilizer products in China overestimated N use in low cropland coverage areas but underestimated N use in high cropland coverage areas. However, our newly reconstructed data have not only corrected the existing biases and improved the spatial distribution but have also shown that vegetable and other crops (e.g., orchards), but not grain crops, are the most intensively fertilized crops in China, implying the importance of quantifying greenhouse gas (GHG) emissions from these croplands. We argue that the reconstructed, spatially explicit N fertilizer use data in this study are expected to contribute to better understanding of biogeochemical cycles, including the simulations of GHG emissions and food production in China. The spatially explicit N fertilizer use and the crop-specific N fertilizer use datasets are available via an open data repository (https://doi.org/10.6084/m9.figshare.21371469.v1; Yu, 2022).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3