Improved Procedures for Feature-Based Suppression of Surface Texture High-Frequency Measurement Errors in the Wear Analysis of Cylinder Liner Topographies

Author:

Podulka PrzemysławORCID

Abstract

Studies on the effect of surface texture on cylinder liner wear is of great importance in many research areas due to the fact that a major part of the mechanical power losses in an engine are caused by friction in the piston-cylinder liner system. Interest from both manufacturers and customers in optimizing this mechanical system seems to be similar. The surface roughness of cylinder liners plays an important role in the control of tribological properties. Cylinder liner surface topography, which affects running-in duration, oil consumption, exhaust gas emissions and engine performance as well, was taken into detailed consideration in this paper. They were measured with a stylus (Talyscan 150) or non-contact—optical (Talysurf CCI Lite white light interferometer) equipment. Precise machining process and accurate measurement equipment may not provide relevant information about surface texture properties when the procedure of processing of received (raw) measured data is not selected appropriately. This work aims to compare various type of procedures for detection and reduction of some-frequency surface topography measurement errors (noise) and consider its influence on the results of wear analysis. It was found that assessments of some extracted areas (profiles) may be much more useful than the characterization of the whole of measured details when noise was defined. Moreover, applications of a commonly-used algorithm, available in the commercial software of the measuring equipment, for measurement errors suppression may be potentially decisive in the definition of measurement noise but, simultaneously, scrupulous attention should be paid if they are implemented adequately.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3