Abstract
Outer membrane proteins are commonly produced by gram-negative bacteria, and they have diverse functions. A subgroup of proteins, which includes OmpA, OmpW and OmpX, is often involved in bacterial pathogenesis. Here we show that OmpA, rather than OmpW or OmpX, contributes to the virulence of enterohemorrhagic Escherichia coli (EHEC) through its type III secretion system (T3SS). Deletion of ompA decreased secretion of the T3SS proteins EspA and EspB; however, the expression level of the LEE genes that encode a set of T3SS proteins did not decrease. The ompA mutant had less abilities to form A/E lesions in host epithelial cells and lyse human red blood cells than the parent strain. Moreover, the virulence of an ompA mutant of Citrobacter rodentium (traditionally used to estimate T3SS-associated virulence in mice) was attenuated. Mice infected with the ompA mutant survived longer than those infected with the parent strain. Furthermore, mice infected with ompA developed symptoms of diarrhea more slowly than mice infected with the parent strain. Altogether, these results suggest that OmpA sustains the activity of the T3SS and is required for optimal virulence in EHEC. This work expands the roles of outer membrane proteins in bacterial pathogenesis.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy