Synergistic Strategies of Heat and Peroxyacetic Acid Disinfection Treatments for Salmonella Control

Author:

Šovljanski Olja1ORCID,Ranitović Aleksandra1,Tomić Ana1ORCID,Ćetković Nenad2,Miljković Ana2ORCID,Saveljić Anja1ORCID,Cvetković Dragoljub1

Affiliation:

1. Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

2. Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia

Abstract

The food industry has recognized a pressing need for highly effective disinfection protocols to decrease the risk of pathogen emergence and proliferation in food products. The integration of antimicrobial treatments in food production has occurred as a potential strategy to attain food items of superior quality with respect to microbiological safety and sensory attributes. This study aims to investigate the individual and synergistic effects of heat and peroxyacetic acid on the inactivation of bacterial cells, considering various contact times and environmental conditions. Four Salmonella serotypes, isolated from industrial meat production surfaces, were employed as model organisms. By systematically assessing the impacts of individual factors and synergistic outcomes, the effectiveness of bacterial cell inactivation and the efficiency of heat and peroxyacetic acid could be predicted. To better approximate real-world food processing conditions, this study also incorporated a bovine albumin-rich condition as a simulation of the presence of organic loads in processing steps. The findings revealed the essential need for a synergistic interplay of investigated parameters with the following optimized values: 1.5% concentration of peroxyacetic acid, temperature range of 60–65 °C, and contact time of 3 min for the complete effect regardless of the degree of contamination.

Funder

Ministry of Education, Science, and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3