HIV-1 Accessory Proteins Impart a Modest Interferon Response and Upregulate Cell Cycle-Related Genes in Macrophages

Author:

Martins Laura J.ORCID,Szaniawski Matthew A.ORCID,Williams Elizabeth S. C. P.ORCID,Coiras MayteORCID,Hanley Timothy M.ORCID,Planelles Vicente

Abstract

HIV-1 infection of myeloid cells is associated with the induction of an IFN response. How HIV-1 manipulates and subverts the IFN response is of key interest for the design of therapeutics to improve immune function and mitigate immune dysregulation in people living with HIV. HIV-1 accessory genes function to improve viral fitness by altering host pathways in ways that enable transmission to occur without interference from the immune response. We previously described changes in transcriptomes from HIV-1 infected and from IFN-stimulated macrophages and noted that transcription of IFN-regulated genes and genes related to cell cycle processes were upregulated during HIV-1 infection. In the present study, we sought to define the roles of individual viral accessory genes in upregulation of IFN-regulated and cell cycle-related genes using RNA sequencing. We observed that Vif induces a set of genes involved in mitotic processes and that these genes are potently downregulated upon stimulation with type-I and -II IFNs. Vpr also upregulated cell cycle-related genes and was largely responsible for inducing an attenuated IFN response. We note that the induced IFN response most closely resembled a type-III IFN response. Vpu and Nef-regulated smaller sets of genes whose transcriptomic signatures upon infection related to cytokine and chemokine processes. This work provides more insight regarding processes that are manipulated by HIV-1 accessory proteins at the transcriptional level.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3