Two-Stage Robust Optimization for Prosumers Considering Uncertainties from Sustainable Energy of Wind Power Generation and Load Demand Based on Nested C&CG Algorithm

Author:

Zhou Qiang1,Zhang Jianmei1,Gao Pengfei1,Zhang Ruixiao1,Liu Lijuan1,Wang Sheng1,Cheng Lin2ORCID,Wang Wei2,Yang Shiyou2ORCID

Affiliation:

1. Gansu Key Laboratory of Renewable Energy Integration Operation and Control, State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

This paper develops a two-stage robust optimization (TSRO) model for prosumers considering multiple uncertainties from the sustainable energy of wind power generation and load demand and extends the existing nested column-and-constraint generation (C&CG) algorithm to solve the corresponding optimization problem. First, considering the impact of these uncertainties on market trading strategies of prosumers, a box uncertainty set is introduced to characterize the multiple uncertainties; a TSRO model for prosumers considering multiple uncertainties is then constructed. Second, the existing nested C&CG algorithm is extended to solve the corresponding optimization problem of which the second-stage optimization is a bi-level one and the inner level is a non-convex optimization problem containing 0–1 decision variables. Finally, a case study is solved. The optimized final overall operating cost of prosumers under the proposed model is CNY 3201.03; the extended algorithm requires only four iterations to converge to the final solution. If a convergence accuracy of 10−6 is used, the final solution time of the extended algorithm is only 9.75 s. The case study result shows that prosumers dispatch the ESS to store surplus wind power generated during the nighttime period and release the stored electricity when the wind power generation is insufficient during the daytime period. It can contribute to promoting the local accommodation of renewable energy and improving the efficiency of renewable energy utilization. The market trading strategy and scheduling results of the energy storage system (ESS) are affected by multiple uncertainties. Moreover, the extended nested C&CG algorithm has a high convergence accuracy and a fast convergence speed.

Funder

State Grid Gansu Electric Power Company

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3