Design, Fabrication, and Operation of a 10 L Biodiesel Production Unit Powered by Conventional and Solar Energy Systems

Author:

Ali Mehmood1ORCID,Shahid Muhammad1,Saeed Waseem1,Imran Shahab2ORCID,Kalam Md. Abul3ORCID

Affiliation:

1. Department of Environmental Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan

2. Centre of Energy Science, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

Biodiesel is regarded as a low-carbon substitute for petroleum-based fuels. This research study aimed to investigate a 10 L batch-scale biodiesel production system from waste cooking oil (WCO) powered energy by solar energy and conventional electricity. The unit’s design considers the mass balance of the system’s constituent parts. The methoxide mixing chamber volume was calculated as 2.5 L with an electric agitator power requirement of 25 W. In comparison, the volume occupied by reactants in the stirred reactor was determined to be 14.5 L with a 250 W electric motor agitator. The WCO biodiesel was produced by a two-step process, i.e., esterification followed by a transesterification reaction using conventional electricity and solar power, yielding 92% and 90% by volume, respectively. The characteristics of WCO biodiesel produced from both energy systems was comparable to ASTM D6751. The total amount of conventional electricity and solar power required was 2.006 kWh and 1.0 kWh per 10 L, respectively. The WCO biodiesel’s mass performance was 64.02% and 62.10%, whereas the energy productivity was 0.0242 kg/MJ and 0.0235 kg/MJ from conventional electricity and solar energy systems, respectively. Therefore, solar energy systems can be employed in biodiesel production with a massive reduction in traditional energy requirements, thus reducing the production’s carbon footprint.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3