Sustainable Biodiesel Production by Transesterification of Waste Cooking Oil and Recycling of Wastewater Rich in Glycerol as a Feed to Microalgae

Author:

Paladino OmbrettaORCID,Neviani MatteoORCID

Abstract

The amount of solid and liquid organic waste and wastewater is continuously increasing all over the world. The necessity of their reuse and recycling is, therefore, becoming more and more pressing. Furthermore, the limited fossil fuel resources, in conjunction with the need to reduce greenhouse gas emissions, advocate the production of renewable fuels. In this work, we analyze a sustainable second-generation process to produce biodiesel by transesterification of waste cooking oil, coupled with a third-generation process in cascade for recycling the incoming wastewater. Since this latter is rich in glycerol, it is used as a feed for microalgae, from which oil can be extracted and added to the waste cooking oil to further produce biodiesel and close the cycle. We studied the influence of different factors like temperature, catalyst load, and reactants ratio on the kinetics of transesterification of the waste oil and estimated the kinetic parameters by different kinetic schemes. The obtained values of activation energies and pre-exponential factors at chosen conditions of T = 60 °C and catalyst load of 0.6% w/w in methanol are: Ea,direct = 35,661 J mol−1, Ea,reverse = 72,989 J mol−1, k0,direct = 9.7708 [dm3 mol−1]3 min−1, and k0,reverse = 24,810 [dm3 mol−1]3 min−1 for the global fourth-order reversible reaction scheme and Ea = 67,348 J mol−1 and k0 = 2.157 × 109 min−1 for the simplified pseudo-first-order irreversible reaction scheme; both in strong agreement with literature data. Furthermore, we designed very efficient conditions for discontinuous and continuous operating mode, both at lab-scale and pilot-scale. The quality of the biodiesel produced from waste cooking sunflower oil is compared with that of biodiesel produced by different kinds of virgin vegetable oils, showing that the former possesses acceptable quality standards (Cetane number = 48 and LHV = 36,600 kJ kg−1). Finally, the recycling of wastewater rich in glycerol as a nutrient for mixotrophic microalgae nurturing is discussed, and microalgae growing kinetics are evaluated (k1 about 0.5 day−1), endorsing the possibility of algae extraction each 4–5 days in a semi-continuous operating mode. The experimental results at the pilot scale finally confirm the quality of biodiesel, and the obtained yields for a two-stage process prove the competitiveness of this sustainable process on the global market.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3