Characterization of Cross-Linking in Guar Gum Hydrogels via the Analysis of Thermal Decomposition Behavior and Water Uptake Kinetics

Author:

Lan Yanjiao1,Xie Zhoujian12,Wang Ting12,Lu Jianfang12,Li Pengfei12ORCID,Jiang Jianxin3

Affiliation:

1. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China

2. Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China

3. Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China

Abstract

This study aimed to explore a test method for evaluating the effective cross-linking density of hydrogels. A guar gum–epichlorohydrin hydrogel (GEH) was prepared using guar gum (GG) as the raw material and epichlorohydrin (ECH) as the cross-linking agent. The thermal and mechanical properties, equilibrium swelling rate (ESR), water uptake (WU), and mass cross-linking degree of the hydrogels were assessed. Furthermore, the diffusion behavior of water molecules in the freeze-dried GEH was investigated. The experimental results showed the significance of the initial decomposition temperature (Ti) and final decomposition temperature (Tf) of the freeze-dried GEHs in determining the effective cross-linking density. The water uptake kinetics of the freeze-dried GEH was consistent with the linear fitting of the pseudo-second-order kinetic model and nonlinear fitting of the Fickian diffusion model, suggesting that chemisorption dominated the water absorption process in the GEH. Therefore, the effective cross-linking density of the hydrogels could be determined from the thermodynamic analysis and the diffusive behavior of water molecules in the gels. The thermal stability and water diffusion kinetics of the hydrogels were closely linked to the effective cross-linking density and pendant modification.

Funder

scientific research foundation for the introduced talents of Guangxi Minzu University

Natural Science Foundation of Guangxi Province, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3