Abstract
Energy intense nature of cement kiln demands optimal operation to minimize the energy requirement. Optimal control of cement kiln is achieved by proper tuning of the model predictive controller (MPC), which is addressed in this work. Genetic algorithm (GA) is used to determine the MPC weights that minimize the overall energy utilization with reduced tracking error. Single objective function has been formulated using importance weighted performance metrics like energy utilization and integral absolute error in tracking the desired response. Importance weights are determined in specific to the control scenarios using an interactive decision tree (IDT). It interacts with the operator to detect the weaker metrics and raises the importance level for further improvement. The algorithm terminates after attending all the metrics with the consent from the operator. Five control scenarios that predominantly occur in industrial cement kiln have been considered in this study. It includes tracking, measured, and unmeasured disturbance rejection of pulse and Gaussian type noises. The results illustrate the minimized energy operation with the use of the proposed single objective function as compared with the multi-objective function-based GA tuning procedure.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献