Transcriptional Immune Signatures of Alveolar Macrophages and the Impact of the NLRP3 Inflammasome on Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Replication

Author:

Hicks Julie A.,Yoo DongwanORCID,Liu Hsiao-Ching

Abstract

Porcine Reproductive and Respiratory Syndrome (PRRS) is a contagious viral (PRRSV) disease in pigs characterized by poor reproductive health, increased mortality, and reductions in growth rates. PRRSV is known to implement immuno-antagonistic mechanisms to evade detection and mute host responses to infection. To better understand the cellular immunosignature of PRRSV we have undertaken transcriptome and immunomodulatory studies in PRRSV-infected porcine alveolar macrophages (PAMs). We first used genome-wide transcriptome profiling (RNA-seq) to elucidate PRRSV-induced changes in the PAM transcriptome in response to infection. We found a number of cellular networks were altered by PRRSV infection, including many associated with innate immunity, such as, the NLRP3 inflammasome. To further explore the role(s) of innate immune networks in PRRSV-infected PAMs, we used an NLRP3-specific inhibitor, MCC950, to identify the potential functionality of the inflammasome during PRRSV replication. We found that PRRSV does quickly induce expression of inflammasome-associated genes in PAMs. Treatment of PAMs with MCC950 suggests NLRP3 inflammasome activation negatively impacts viral replication. Treatment of PAMs with cell culture supernatants from macrophages subjected to NLRP3 inflammasome activation (via polyinosinic-polycytidylic acid (poly I:C) transfection), prior to PRRSV infection resulted in significantly reduced viral RNA levels compared to PAMs treated with cell culture supernatants from macrophages subjected to NLRP3 inflammasome inhibition (MCC950 treatment/poly I:C transfection). This further supports a role for NLRP3 inflammasome activation in the innate macrophagic anti-PRRSV immune response and suggests that PRRSV is sensitive to the effects of NLRP3 inflammasome activity. Taken together, these transcriptome and immunoregulatory data highlight the complex changes PRRSV infection induces in the molecular immune networks of its cellular host.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3