Comparison of Entropy Methods for an Optimal Rain Gauge Network: A Case Study of Daegu and Gyeongbuk Area in South Korea

Author:

Kwon Taeyong,Lim Junghyun,Yoon SeongsimORCID,Yoon Sanghoo

Abstract

To reduce hydrological disasters, it is necessary to operate rain gauge stations at locations where the spatio-temporal characteristics of rainfall can be reflected. Entropy has been widely used to evaluate the designs and uncertainties associated with rain gauge networks. In this study, the optimal rain gauge network in the Daegu and Gyeongbuk area, which requires the efficient use of water resources due to low annual precipitation and severe drought damage, was determined using conditional and joint entropy, and the selected network was quantitatively evaluated using the root mean square error (RMSE). To consider spatial distribution, prediction errors were generated using kriging. Four estimators used in entropy calculations were compared, and weighted entropy was calculated by weighting the precipitation. The optimal number of rain gauge stations was determined by calculating the RMSE reduction and the reduction ratio according to the number of selected rain gauge stations. Our findings show that the results of conditional entropy were better than those of joint entropy. The optimal rain gauge stations showed a tendency wherein peripheral rain gauge stations were selected first, with central stations being added afterward.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3