Reinforcement Effect of a Concrete Mat to Prevent Ground Collapses Due to Buried Pipe Damage

Author:

Park JeongjunORCID,Chung YoonseokORCID,Hong GigwonORCID

Abstract

This study described a ground reinforcement effect of a concrete mat, in order to apply a concrete mat for ground subsidence restoration of an open cut. A concrete mat can prevent the expansion of a cavity and relaxation area underground due to buried pipe damage when the buried pipe is in use. An experimental study was conducted to analyze the stress distribution characteristics of an underground area by ground reinforcement of a concrete mat. In addition, a numerical analysis was performed to estimate the range of underground reinforcement of a concrete mat. As an experiment results, the maximum stress reduction ratio of the concrete mat in the underground was 28.5% to 30.9%, which means the reinforcement effect of the concrete mat, according to the installation depth of the concrete mat. The finite element analysis (FEA) results showed that the installation depth of the concrete mat differed in various scenarios, in order to secure the reinforcement effect of the concrete mat according to the load conditions (point and uniform load). Therefore, the reinforced depth of a concrete mat should be determined by the load type on the surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction

2. Experimental Study of Ground Subsidence Mechanism Caused by Sewer Pipe Cracks

3. Research on causes and policy suggestions by sinkhole type,2014

4. The road subsidence status and safety improvement plans;Bae;J. Korea Acad. Ind. Coop. Soc.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geological Disaster: An Overview;Intelligent Interpretation for Geological Disasters;2023

2. Effect of Using Plastic Waste Bottles on Soil Response above Buried Pipes under Static Loads;Applied Sciences;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3