Effect of Using Plastic Waste Bottles on Soil Response above Buried Pipes under Static Loads

Author:

Al-Haddad Sinan A.,Al-Ani Faris H.,Fattah Mohammed Y.

Abstract

Development and population growth have made using shallow buried pipes in urban areas, highways, and subways inevitable. In this study, the performance and behavior of shallow unplasticized polyvinyl chloride (uPVC) pipes buried in sand reinforced with PET (polyethylene terephthalate) bottles produced by the end consumer filled with soil under static loads were investigated. The bottle reinforcement mattress filled with soil was vertically installed above the buried uPVC pipe inside the soil bed at the required depth; after that, backfilling was performed. The effects of the relative density of soil, placement depth, and the width of the soil-filled bottle-reinforced block were examined. The increase in relative density has shown a noticeable decrease in footing surface settlement and load transferred to the buried pipe. The test results have shown significant improvement in the ultimate bearing capacity of bottle-reinforced soil with a reduction in surface settlement. The backfill reinforced with soil-filled bottle block has shown a 71% improvement in ultimate bearing capacity. Additionally, the improvement in bearing capacity increases as the placement depth decreases and width increases. The optimum depth of placement and width of the bottle-reinforced mattress were 0.50 and 2.08 B. The proposed soil reinforcement method may be a good and relatively inexpensive alternative to traditional geosynthetic reinforcement while providing geotechnical and environmental benefits.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3