Analysis on Catastrophe Theory during First Weighting Sliding Instability and Support Crushing of Main Roof with Large Mining Height in Shallow Coal Seam

Author:

Yang Dengfeng,Zhang YongjunORCID,Chen Zhonghui

Abstract

Roof sliding and instability along the coal wall usually occur in the working face at large mining heights during the process of the first weighting, which causes roof cutting and support crushing. A mechanical model consists of the main roof, immediate roof, and support based on the nonlinear characteristics of the failure and instability of the immediate roof under the abutment pressure, which we constructed to study the step sinking of the main roof, as well as to assign the reasonable value of the support resistance during the first weighting. The instability mechanism of the system was studied by the catastrophe theory and the principle of energy conservation. A conclusion was drawn that the combined cantilever beam structure for the immediate roof will form with the increase of the mining height, and the instability of the immediate roof causes the catastrophic instability of the system. The system instability was found to be related to the stiffness ratio K, material parameters, the load Q, and the first weighting interval of the main roof by analyzing the necessary and sufficient conditions for system instability. The influence degree of each parameter on the stiffness ratio K was as follows: elastic modulus E > support stiffness k1 > cross-section area a > immediate roof thickness H. The calculation equations of support resistance and subsidence of roof step were obtained. The method of judging the roof instability using catastrophe theory was proved as reasonable on the basis of the monitoring example of no. 12401 working face in Shendong mining area, China. On this basis, a reasonable value of support resistance was further calculated, and the working face was maintained safely when the support resistance exceeded 19,232 kN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Study on Roof Structure and Ground Control in Shallow Seam Longwall Mining;Huang,2010

2. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height;Yan;J. China Coal Soc.,2011

3. Analysis of ground pressure and roof movement in fully-mechanized top coal caving with large mining height in ultra-thick seam;Li;J. China Coal Soc.,2014

4. Cantilever structure moving type of key strata and its influence on ground pressure in large mining height workface;JU;J. China Coal Soc.,2011

5. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0m height chocks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3