Abstract
In this study, we analyzed the nonradiative recombination impact of multiple exciton generation solar cells (MEGSCs) with a revised detailed balance (DB) limit. The nonideal quantum yield (QY) of a material depends on the surface defects or the status of the material. Thus, its QY shape deviates from the ideal QY because of carrier losses. We used the ideal reverse saturation current variation in the DB of MEGSCs to explain the impact of nonradiative recombination. We compared ideal and nonideal QYs with the nonradiative recombination into the DB of MEGSCs under one-sun and full-light concentration. Through this research, we seek to develop a strategy to maintain MEGSC performance.
Funder
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献