Multiple Exciton Generation Solar Cells: Numerical Approaches of Quantum Yield Extraction and Its Limiting Efficiencies

Author:

Lee JongwonORCID,Ahn Chi-HyungORCID

Abstract

Multiple exciton generation solar cells exhibit low power conversion efficiency owing to non-radiative recombination, even after the generation of numerous electron and hole pairs per incident photon. This paper elucidates the non-idealities of multiple exciton generation solar cells. Accordingly, we present mathematical approaches for determining the quantum yield to discuss the non-idealities of multiple exciton generation solar cells by adjusting the delta function. We present the use of the Gaussian distribution function to present the occupancy status of carriers at each energy state using the Dirac delta function. Further, we obtained ideal and non-ideal quantum yields by modifying the Gaussian distribution function for each energy state. On the basis of this approach, we discuss the material imperfections of multiple exciton generations by analyzing the mathematically obtained quantum yields. Then, we discuss the status of radiative recombination calculated from the ratio of radiative to non-radiative recombination. Finally, we present the application of this approach to the detailed balance limit of the multiple exciton generation solar cell to evaluate the practical limit of multiple exciton generation solar cells.

Funder

Education and Research Promotion Program of KOREATECH

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3