Non-Destructive Identification and Estimation of Granulation in Honey Pomelo Using Visible and Near-Infrared Transmittance Spectroscopy Combined with Machine Vision Technology

Author:

Sun Xiaopeng,Xu Sai,Lu Huazhong

Abstract

Granulation is a physiological disorder of juice sacs in citrus fruit, causing juice sacs to become hard and dry and resulting in decreased internal quality of citrus fruit. Honey pomelo is a thick-skinned citrus fruit, and it is difficult to identify the extent of granulation by observation of the outer peel and fruit shape. In this study, a rapid and non-destructive testing method using visible and near-infrared transmittance spectroscopy combined with machine vision technology was applied to identify and estimate granulation inside fruit. A total of 600 samples in different growth periods was harvested, and fruit were divided into five classes according to five granulation levels. Spectral data were obtained for two ranges of 400–1100 nm and 900–1700 nm by visible and near-infrared transmittance spectroscopy. In addition, chemometrics were used to measure the chemical changes of soluble solid content (SSC), titratable acidity (TA), and moisture content (MC) caused by different granulation levels. Machine vision technology can rapidly estimate the external characteristics of samples and measure the physical changes in mass and volume caused by different granulation levels. Compared with using a single or traditional methods, the predictive performances of multi-category classification models (PCA-SVM and PCA-GRNN) were significantly enhanced. In particular, the model accuracy rate (ARM) was 99% for PCA-GRNN, with classification accuracy (CA), classification sensitivity (CS), and classification specificity (CSP) of 0.9950, 0.9750, and 0.9934, respectively. The results showed that this method has great potential for the identification and estimation of granulation. Multi-source data fusion and application of a multi-category classification model with the smallest number of input layers and acceptable high predictive performances are proposed for on-line applications. This method can be effectively used on-line for the non-destructive detection of fruits with granulation.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Fruit sugar and organic acid were significantly related to fruit Mg of six citrus cultivars

2. Granulation (crystallization) of Valencia oranges;Bartholomew;Calif. Citrogr.,1934

3. Granulation and dehiscent segments of Guan honey pomelo fruits and their correlation to mineral nutrients;Xie;J. Fujian Agric. Univ.,1998

4. Granulation in Florida citrus;Ritenour;Proc. Fla. State Hortic. Soc.,2004

5. Scierification of juice sacs in pummelo (Citrus grandis) fruit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3