Author:
Chou Frederick N.-F.,Linh Nguyen Thi Thuy,Wu Chia-Wen
Abstract
Resource shortages are having an increasingly severe impact as global trends like rapid population growth, urbanization, economic development, and climate change unfold. Moreover, rising living standards across many regions are also affecting water and energy resources. This entails an urgent requirement to improve water resources management. An important improvement is to transfer water between the different uses of the reservoir system. A compromise between the needs of hydropower generation and the water supply can be negotiated for the reservoir system to reduce the severity of water shortages. The Be River basin in Vietnam was selected as a case study to investigate. The combination of the generalized water allocation simulation model (GWASIM) and the bounded optimization by quadratic approximation (BOBYQA) algorithm was applied to optimize hydropower generation in various water shortage scenarios. The results present optimized hydropower generation policies for cascade reservoirs that would significantly improve the present operating policy in terms of both the water supply and hydropower generation. Moreover, multiple scenarios will provide flexibility to the reservoir operator by giving the relationship between water and energy. Given water supply conditions, the operator will be able to choose among several optimal solutions to ensure greater water resource efficiency in the Be River basin.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献