A Selective Oxidation Strategy towards the Yolk–Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage

Author:

Liao Wenhua12,Hu Qianqian1,Lin Xiaoshan1,Yan Ruibo12,Zhan Guanghao1,Wu Xiaohui2,Huang Xiaoying1ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China

2. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

Abstract

Metal chalcogenides are attractive anode materials for lithium-ion batteries (LIBs) due to their high theoretical capacities. With the advantages of low cost and abundance reserves, ZnS is regarded as the prime candidate anode material for future generations, but its practical application is hindered by the large volume expansion during repeated cycling processes and inherent poor conductivity. Rational design of the microstructure with large pore volume and high specific surface area is of great significance to solve these problems. Here, a carbon-coated ZnS yolk-shell structure (YS-ZnS@C) has been prepared by selective partial oxidation of a core-shell structured ZnS@C precursor in air and subsequent acid etching. Studies show that the carbon wrapping and proper etching to bring cavities can not only improve the material’s electrical conductivity, but can also effectively alleviate the volume expansion problem of ZnS during its cycles. As a LIB anode material, the YS-ZnS@C exhibits an obvious superiority in capacity and cycle life compared to ZnS@C. The YS-ZnS@C composite shows a discharge capacity of 910 mA h g−1 at the current density of 100 mA g−1 after 65 cycles, compared to only 604 mA h g−1 for ZnS@C after 65 cycles. Notably, at a large current density of 3000 mA g−1, a capacity of 206 mA h g−1 can still be maintained after 1000 cycles (over three times of the capacity for ZnS@C). It is expected that the synthetic strategy developed here is applicable to designing various high-performance metal chalcogenide-based anode materials for LIBs.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3