Core–Double-Shell TiO2@Fe3O4@C Microspheres with Enhanced Cycling Performance as Anode Materials for Lithium-Ion Batteries

Author:

Chen Yuan12ORCID,Yang Jiatong1,He Aoxiong1,Li Jian12,Ma Weiliang12,Record Marie-Christine234ORCID,Boulet Pascal234ORCID,Wang Juan12ORCID,Albina Jan-Michael12ORCID

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China

2. New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Wuhan 430068, China

3. Aix-Marseille University, IM2NP, CEDEX 20, 13397 Marseille, France

4. CNRS, IM2NP, CEDEX 20, 13397 Marseille, France

Abstract

Due to the volume expansion effect during charge and discharge processes, the application of transition metal oxide anode materials in lithium-ion batteries is limited. Composite materials and carbon coating are often considered feasible improvement methods. In this study, three types of TiO2@Fe3O4@C microspheres with a core–double-shell structure, namely TFCS (TiO2@Fe3O4@C with 0.0119 g PVP), TFCM (TiO2@Fe3O4@C with 0.0238 g PVP), and TFCL (TiO2@Fe3O4@C with 0.0476 g PVP), were prepared using PVP (polyvinylpyrrolidone) as the carbon source through homogeneous precipitation and high-temperature carbonization methods. After 500 cycles at a current density of 2 C, the specific capacities of these three microspheres are all higher than that of TiO2@Fe2O3 with significantly improved cycling stability. Among them, TFCM exhibits the highest specific capacity of 328.3 mAh·g−1, which was attributed to the amorphous carbon layer effectively mitigating the capacity decay caused by the volume expansion of iron oxide during charge and discharge processes. Additionally, the carbon coating layer enhances the electrical conductivity of the TiO2@Fe3O4@C materials, thereby improving their rate performance. Within the range of 100 to 1600 mA·g−1, the capacity retention rates for TiO2@Fe2O3, TFCS, TFCM, and TFCL are 27.2%, 35.2%, 35.9%, and 36.9%, respectively. This study provides insights into the development of new lithium-ion battery anode materials based on Ti and Fe oxides with the abundance and environmental friendliness of iron, titanium, and carbon resources in TiO2@Fe3O4@C microsphere anode materials, making this strategy potentially applicable.

Funder

Natural Science Foundation of Hubei Province

Hubei Provincial Key Laboratory of Green Materials for Light Industry

Hubei Province Key Research Foundation for Water Resources

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3