Abstract
With a growing awareness of the impact of resource exploitation, issues such as mine site certification and recyclate use in products come to the fore. These aspects are incorporated into the ESSENZ method which assesses resource criticality. Moreover, the method is enhanced by addressing further shortcomings and considering the SCARCE method. The resultant so-called ESSENZ+ method is tested in a case study on batteries involving a data update concerning the characterization factors of eight raw materials. The comparison of the results, using the original ESSENZ versus the updated ESSENZ+ characterization factors, shows significant changes regarding the demand growth (an increase of four times due to the inclusion of future trends) and price fluctuations (an increase of fourteen times due to a data update). The impact of the introduction of the aspects of mine site certification and recyclate use are examined via sensitivity analyses showing a reduced supply risk, yet to different extents in the different categories. A comparison of nickel-manganese-cobalt (NMC) batteries with different NMC ratios shows a decreasing supply risk per kWh, along with technological advancement, due to lower material requirements and smaller cobalt shares. ESSENZ+ enables users to include relevant developments in their assessment such as increasing mine site certifications and recyclate use.
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation
Reference117 articles.
1. Mineral Resource Governance in the 21st Century: Gearing Extractive Industries towards Sustainable Development,2020
2. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future,2020
3. Assessment of key socio-economic and environmental challenges in the mining industry: Implications for resource policies in emerging economies
4. Selecting and prioritizing material resources by criticality assessments
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献