Mechanical Performance of Bentonite Plugs in Abandonment Operations of Petroleum Wells

Author:

Oliveira Laura Rafaela Cavalcanti de1,Lima Mário César de Siqueira1,Costa Waleska Rodrigues Pontes da1ORCID,Gonçalves Ruth Luna do Nascimento1,Costa Anna Carolina Amorim1,Nóbrega Karine Castro1,Souza Elessandre Alves de2,Amorim Luciana Viana1

Affiliation:

1. Unidade Acadêmica de Engenharia de Petróleo/Unidade Acadêmica de Estatística, Universidade Federal de Campina Grande (UFCG), Rua Aprigio Veloso, 882, Bairro Universitário, Campina Grande 58429-900, PB, Brazil

2. Centro de Pesquisas Leopoldo Américo Miguez de Mello (CENPES), PETROBRAS (Petróleo Brasileiro S.A.), Avenida Horacio Macedo, 250, Cidade Universitária, Rio de Janeiro 21941-915, RJ, Brazil

Abstract

This study aims to evaluate how the operational procedure adopted for pellet placement and the exposure to subsurface conditions influence the mechanical integrity of bentonite plugs used as barrier elements in the abandonment of petroleum wells. To this end, the plugs were formed by hydrating the pellets directly in water, simulating the onshore procedure, while the offshore plugs were obtained from pellets hydrated in deionized water after immersion in diesel or olefin, which are suggested as displacement fluids. The plugs obtained were tested by compression and adhesion tests. These mechanical tests were also carried out for specimens obtained from plugs exposed to four formulations of synthetic formation waters. The results obtained demonstrated that, in the offshore procedure, the previous contact with olefin may adversely affects the mechanical stability of bentonite plugs, while plugs formed from pellets immersed in diesel presented satisfactory mechanical properties. However, the contact with formation water evidenced that the onshore plug presents superior resistance than the offshore plug previously immersed in diesel. The highly successful performance of the onshore plug was attested by the maintenance of the compressive strength, which exhibited a maximum reduction of 13%, even after exposure to the most saline formation waters.

Funder

Petrobras

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3