Effective Detection of Epileptic Seizures through EEG Signals Using Deep Learning Approaches

Author:

Mekruksavanich Sakorn1ORCID,Jitpattanakul Anuchit23ORCID

Affiliation:

1. Department of Computer Engineering, School of Information and Communication Technology, University of Phayao, Phayao 56000, Thailand

2. Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

3. Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

Epileptic seizures are a prevalent neurological condition that impacts a considerable portion of the global population. Timely and precise identification can result in as many as 70% of individuals achieving freedom from seizures. To achieve this, there is a pressing need for smart, automated systems to assist medical professionals in identifying neurological disorders correctly. Previous efforts have utilized raw electroencephalography (EEG) data and machine learning techniques to classify behaviors in patients with epilepsy. However, these studies required expertise in clinical domains like radiology and clinical procedures for feature extraction. Traditional machine learning for classification relied on manual feature engineering, limiting performance. Deep learning excels at automated feature learning directly from raw data sans human effort. For example, deep neural networks now show promise in analyzing raw EEG data to detect seizures, eliminating intensive clinical or engineering needs. Though still emerging, initial studies demonstrate practical applications across medical domains. In this work, we introduce a novel deep residual model called ResNet-BiGRU-ECA, analyzing brain activity through EEG data to accurately identify epileptic seizures. To evaluate our proposed deep learning model’s efficacy, we used a publicly available benchmark dataset on epilepsy. The results of our experiments demonstrated that our suggested model surpassed both the basic model and cutting-edge deep learning models, achieving an outstanding accuracy rate of 0.998 and the top F1-score of 0.998.

Funder

Thailand Science Research and Innovation Fund

University of Phayao

National Science, Research and Innovation Fund

King Mongkut’s University of Technology North Bangkok

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3