ANN-Based Shear Capacity of Steel Fiber-Reinforced Concrete Beams without Stirrups

Author:

Abambres MiguelORCID,Lantsoght Eva O.L.ORCID

Abstract

Comparing experimental results of the shear capacity of steel fiber-reinforced concrete (SFRC) beams without stirrups to the capacity predicted using current design equations and other available formulations shows that predicting the shear capacity of SFRC beams without mild steel shear reinforcement is still difficult. The reason for this difficulty is the complex mechanics of the problem, where the steel fibers affect the different shear-carrying mechanisms. Since this problem is still not fully understood, we propose the use of artificial intelligence (AI) to derive an expression based on the available experimental data. We used a database of 430 datapoints obtained from the literature. The outcome is an artificial neural network-based expression to predict the shear capacity of SFRC beams without shear reinforcement. For this purpose, many thousands of artificial neural network (ANN) models were generated, based on 475 distinct combinations of 15 typical ANN features. The proposed “optimal” model results in maximum and mean relative errors of 0.0% for the 430 datapoints. The proposed model results in a better prediction (mean Vtest/VANN = 1.00 with a coefficient of variation 1 × 10−15) as compared to the existing code expressions and other available empirical expressions, with the model by Kwak et al. giving a mean value of Vtest/Vpred = 1.01 and a coefficient of variation of 27%. Until mechanics-based models are available for predicting the shear capacity of SFRC beams without shear reinforcement, the proposed model thus offers an attractive solution for estimating the shear capacity of SFRC beams without shear reinforcement. With this approach, designers who may be reluctant to use SFRC because of the large uncertainties and poor predictions of experiments, may feel more confident using the material for structural design.

Funder

Universidad San Francisco de Quito

Technische Universiteit Delft

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3