Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements

Author:

Łapka PiotrORCID,Cieślikiewicz ŁukaszORCID

Abstract

In this paper, an in situ investigation and comparison of energy consumption and efficiency of two devices for implementation of the thermo-injection masonry wall drying method are presented. The following drying devices were considered: the currently used device (CUD) and the novel prototype device (NPD) with optimized control of the operating parameters. The historic building subjected to the drying and renovation was located in the city of Łowicz (Poland). The temperature and relative humidity of the air in several points in the basement and the temperature and moisture content at various locations in the considered masonry wall segments, as well as the electrical parameters for both devices, were measured in the real time and registered by applying a dedicated data acquisition system. The specific energy consumption during drying, defined as the energy consumption divided by the length of the drying wall section and by the mean volumetric moisture content change in the wall, was equal to 16.58 and 10.44 kWh/m/moisture content vol.% for the CUD and NPD, respectively. Moreover, the moisture content in the wall decreased by an average of 2.13 and 3.22 vol.% for the CUD and NPD, respectively, while the temperature of the wall surface in the drying zone was increased to approximately 35–40 °C and 40–65 °C for the CUD and NPD, respectively. The obtained results showed that the NPD was much more efficient than the CUD and that the building renovation process may be more environmentally friendly by applying more efficient drying devices and strategies.

Funder

National Centre for Research and Development

Warsaw University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3