Properties and Cementation Mechanism of Geopolymer Backfill Paste Incorporating Diverse Industrial Solid Wastes

Author:

Wang HaoyuORCID,Zhao XianhuiORCID,Wang Jing,He Lili,Zhang Aijuan,Gao Han,Yang Jing,Liang Luhui

Abstract

Industrialization has resulted in a large number of industrial waste slags being produced, which severely pollute the environment. This urgently needs resourceful treatment. The objective of this paper is to investigate the preparation, performance, and cementation mechanism of a novel geopolymer backfill paste for goaf. We reused diverse industrial waste slags based on low-calcium silica–alumina precursors (two fly ashes FAI, FAII, and red mud RM), high-calcium-based slags (carbide slag CS, soda residue SR, briquette residue slag BRS, and granulated blast furnace slag GBFS), and two additives (gypsum powder GP and lime powder LP). The hardening of backfill pastes was investigated by analyzing the effects of FAI, GBFS, RM, and LP on physical and chemical performance. The cementation mechanism of the prepared backfill paste was revealed through morphology, mineralogy, and chemical products through the use of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The results show that the prepared backfill paste incorporating various solid wastes (FAI, FAII, RM, CS, SR, GBFS, RBS, etc.) yields a 28-d compressive strength of 2.1 MPa (higher than the required value of 0.6 MPa) and a fluidity of 201 mm. Geopolymer gels (N,C)-A-S-H, calcium silicate hydrated C-S-H, and calcium aluminosilicate hydrated C-A-S-H gels serve as chemical cementers, whereas unreacted particles serve as physical filler skeletons. These findings provide an experimental and theoretical basis for the interchangeable use of various identical component solid wastes in backfill engineering materials.

Funder

Tianjin Research Innovation Project for Postgraduate Students

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3