Investigating on the Pavement Performance of Multi-Source Solid Wastes by Cement and Fly Ash

Author:

Shan Long1,Li Hongbo123,Zhao Jing1,Zhang Xuanshuo1,Kang Xinrui1,Gao Xing1,Zhou Zhiyao1

Affiliation:

1. Department of Civil and Hydraulic Engineering, School of Civil and Hydraulic Engineering, Wencui Campus, Ningxia University, Yinchuan 750021, China

2. Engineering Research Center for Efficient Utilization of Water Resources in Modern Agriculture in Arid Regions, Yinchuan 750021, China

3. Ningxia Research Center of Technology on Water-Saving Irrigation and Water Resources Regulation, Yinchuan 750021, China

Abstract

In order to advance the utilization rate of multi-source solid wastes in the Ningxia region of China, 16 groups of pavement base mixtures were designed with cement and fly ash (FA) as binders, steel slag (SS), silicon manganese slag (SMS), and recycled crushed stone (RCS) as composite aggregates. The evolution laws of mechanical and frost resistance properties of the mixture were investigated by unconfined compressive strength (UCS), indirect tensile strength (ITS), freeze–thaw (FT), and ultrasonic detection tests. Then, the strength formation mechanisms were revealed by microscopic characterization technology. The mathematical models between UCS-ITS, UCS-ultrasonic amplitude, FT cycles-UCS damage, and frost resistance coefficient-relative dynamic elastic modulus Er were established. The results show that cement content and curing age exhibited a positive effect on the mechanical strength and frost resistance of the mixture. When the replacement rate of SS was 60%, the mechanical strength and frost resistance were preferable. The R2 of the strength relationship models constructed was greater than 0.9, indicating high fitting accuracy. With the extension of the curing age, the cementitious products such as C-S-H (hydrated calcium silicate) and AFt (ettringite) developed entirely, and they were interlocked and cemented with each other, resulting in the micro-morphology developed from the three-dimensional network structure to the dense system. The macroscopic behavior incarnated that the mechanical strength and frost resistance of the mixture were significantly enhanced.

Funder

National Natural Science Foundation of China

Key Project of Ningxia Natual Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3