The bHLH Transcription Factor OsbHLH057 Regulates Iron Homeostasis in Rice

Author:

Wang WujianORCID,Shinwari Kamran IqbalORCID,Zhang Hao,Zhang Hui,Dong Lv,He Fengyu,Zheng LuqingORCID

Abstract

Many basic Helix-Loop-Helix (bHLH) transcription factors precisely regulate the expression of Fe uptake and translocation genes to control iron (Fe) homeostasis, as both Fe deficiency and toxicity impair plant growth and development. In rice, three clade IVc bHLH transcription factors have been characterised as positively regulating Fe-deficiency response genes. However, the function of OsbHLH057, another clade IVc bHLH transcription factor, in regulating Fe homeostasis is unknown. Here, we report that OsbHLH057 is involved in regulating Fe homeostasis in rice. OsbHLH057 was highly expressed in the leaf blades and lowly expressed in the roots; it was mainly expressed in the stele and highly expressed in the lateral roots. In addition, OsbHLH057 was slightly induced by Fe deficiency in the shoots on the first day but was not affected by Fe availability in the roots. OsbHLH057 localised in the nucleus exhibited transcriptional activation activity. Under Fe-sufficient conditions, OsbHLH057 knockout or overexpression lines increased or decreased the shoot Fe concentration and the expression of several Fe homeostasis-related genes, respectively. Under Fe-deficient conditions, plants with an OsbHLH057 mutation showed susceptibility to Fe deficiency and accumulated lower Fe concentrations in the shoot compared with the wild type. Unexpectedly, the OsbHLH057-overexpressing lines had reduced tolerance to Fe deficiency. These results indicate that OsbHLH057 plays a positive role in regulating Fe homeostasis, at least under Fe-sufficient conditions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3