Evolutionary studies of the basic helix–loop–helix (bHLH) IVc gene family in plants and the role of AtILR3 in Arabidopsis response to ABA stress

Author:

Jiang Min1ORCID,Niu Yuqian1,Wen Guosong2,Zhao Changling2,Gao Qing2,Li Guiqiong2

Affiliation:

1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences Fudan University Shanghai China

2. College of Agronomy and Biotechnology Yunnan Agricultural University Kunming China

Abstract

AbstractThe basic helix–loop–helix (bHLH) IVc transcription factors (TFs) play central roles in controlling iron (Fe) homeostasis and biotic stress responses. However, their evolutions and functions in other abiotic stresses are poorly understood. In this study, the IAALEUCINE RESISTANT3 (ILR3) homologs were traced roughly back to before the early origin of land plants and divided into six main clades (Clade A‐F). Further analysis found that the ILR3 orthologs were angiosperm‐specific, suffering from motif‐acquisition events and loose purifying selection. Synteny analysis displayed that the whole genome duplications (WGDs) contributed to the establishment of the IRON DEFICIENCY TOLERANT1 (IDT1, also called bHLH34)/bHLH104 lineage prior to the divergence of angiosperms. Sequence analysis revealed that the ILR3 homologs had some novel and conserved motifs except bHLH and leucine zipper (ZIP) domains. Particularly, Arabidopsis thaliana ILR3 (AtILR3) was a nuclear protein and greatly activated by ABA and CdCl2 stresses. Simultaneously, the molecular and genetic analyses suggested that the AtILR3 acted as a positive regulator in the ABA stress response through enhancing the ability of reactive oxygen species (ROS)‐scavenging, such as the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The inductively coupled plasma mass spectrometry (ICP‐MS) analyses exhibited that the AtILR3 affected the absorption of nutrient elements, especially iron elements, under ABA stress. Collectively, our findings could shed deep light on the origin and evolution of the plant ILR3s, as well as the functions of the AtILR3 under ABA stress.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3