Abstract
While the U.S. Food and Drug Administration and the European Medicines Evaluation Agency have recently approved new drugs to treat spinal muscular atrophy 1 (SMA1) in young patients, they are mostly ineffective in older patients since many motor neurons have already been lost. Therefore, understanding nervous system (NS) physiology in SMA patients is essential. Consequently, studying neural stem cells (NSCs) from SMA patients is of significant interest in searching for new treatment targets that will enable researchers to identify new pharmacological approaches. However, studying NSCs in these patients is challenging since their isolation damages the NS, making it impossible with living patients. Nevertheless, it is possible to study NSCs from animal models or create them by differentiating induced pluripotent stem cells obtained from SMA patient peripheral tissues. On the other hand, therapeutic interventions such as NSCs transplantation could ameliorate SMA condition. This review summarizes current knowledge on the physiological properties of NSCs from animals and human cellular models with an SMA background converging on the molecular and neuronal circuit formation alterations of SMA fetuses and is not focused on the treatment of SMA. By understanding how SMA alters NSC physiology, we can identify new and promising interventions that could help support affected patients.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献