Microgreens Biometric and Fluorescence Response to Iron (Fe) Biofortification

Author:

Frąszczak BarbaraORCID,Kleiber TomaszORCID

Abstract

Microgreens are foods with high nutritional value, which can be further enhanced with biofortification. Crop biofortification involves increasing the accumulation of target nutrients in edible plant tissues through fertilization or other factors. The purpose of the present study was to evaluate the potential for biofortification of some vegetable microgreens through iron (Fe) enrichment. The effect of nutrient solution supplemented with iron chelate (1.5, 3.0 mg/L) on the plant’s growth and mineral concentration of purple kohlrabi, radish, pea, and spinach microgreens was studied. Increasing the concentration of Fe in the medium increased the Fe content in the leaves of the species under study, except for radish. Significant interactions were observed between Fe and other microelements (Mn, Zn, and Cu) content in the shoots. With the increase in the intensity of supplementation with Fe, regardless of the species, the uptake of zinc and copper decreased. However, the species examined suggested that the response to Fe enrichment was species-specific. The application of Fe didn’t influence plant height or fresh and dry weight. The chlorophyll content index (CCI) was different among species. With increasing fertilisation intensity, a reduction in CCI only in peas resulted. A higher dose of iron in the medium increased the fluorescence yield of spinach and pea microgreens. In conclusion, the tested species, especially spinach and pea, grown in soilless systems are good targets to produce high-quality Fe biofortified microgreens.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3