Effect of Image-Processing Routines on Geographic Object-Based Image Analysis for Mapping Glacier Surface Facies from Svalbard and the Himalayas

Author:

Jawak Shridhar D.ORCID,Wankhede Sagar F.ORCID,Luis Alvarinho J.,Balakrishna Keshava

Abstract

Advancements in remote sensing have led to the development of Geographic Object-Based Image Analysis (GEOBIA). This method of information extraction focuses on segregating correlated pixels into groups for easier classification. This is of excellent use in analyzing very-high-resolution (VHR) data. The application of GEOBIA for glacier surface mapping, however, necessitates multiple scales of segmentation and input of supportive ancillary data. The mapping of glacier surface facies presents a unique problem to GEOBIA on account of its separable but closely matching spectral characteristics and often disheveled surface. Debris cover can induce challenges and requires additions of slope, temperature, and short-wave infrared data as supplements to enable efficient mapping. Moreover, as the influence of atmospheric corrections and image sharpening can derive variations in the apparent surface reflectance, a robust analysis of the effects of these processing routines in a GEOBIA environment is lacking. The current study aims to investigate the impact of three atmospheric corrections, Dark Object Subtraction (DOS), Quick Atmospheric Correction (QUAC), and Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH), and two pansharpening methods, viz., Gram–Schmidt (GS) and Hyperspherical Color Sharpening (HCS), on the classification of surface facies using GEOBIA. This analysis is performed on VHR WorldView-2 imagery of selected glaciers in Ny-Ålesund, Svalbard, and Chandra–Bhaga basin, Himalaya. The image subsets are segmented using multiresolution segmentation with constant parameters. Three rule sets are defined: rule set 1 utilizes only spectral information, rule set 2 contains only spatial and contextual features, and rule set 3 combines both spatial and spectral attributes. Rule set 3 performs the best across all processing schemes with the highest overall accuracy, followed by rule set 1 and lastly rule set 2. This trend is observed for every image subset. Among the atmospheric corrections, DOS displays consistent performance and is the most reliable, followed by QUAC and FLAASH. Pansharpening improved overall accuracy and GS performed better than HCS. The study reports robust segmentation parameters that may be transferable to other VHR-based glacier surface facies mapping applications. The rule sets are adjusted across the processing schemes to adjust to the change in spectral characteristics introduced by the varying routines. The results indicate that GEOBIA for glacier surface facies mapping may be less prone to the differences in spectral signatures introduced by different atmospheric corrections but may respond well to increasing spatial resolution. The study highlighted the role of spatial attributes for mapping fine features, and in combination with appropriate spectral features may enhance thematic classification.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3