Energy and Environmental Assessment of a Hybrid Dish-Stirling Concentrating Solar Power Plant

Author:

Guarino StefaniaORCID,Buscemi Alessandro,Messineo AntonioORCID,Lo Brano ValerioORCID

Abstract

Although the 2019 global pandemic slowed the growing trend of CO2 concentrations in the atmosphere, it has since resumed its rise, prompting world leaders to accelerate the generation of electricity from renewable sources. The study presented in this paper is focused on the evaluation of the energy and environmental benefits corresponding to the hypothesis of hybridizing a dish-Stirling plant installed on the university campus of Palermo (Italy). These analyses were carried out by means of dynamic simulations based on an accurate energy model validated with the experimental data collected during the measurement campaign that occurred during the period of operation of the reference plant. Assuming different scenarios for managing the production period and different fuels, including renewable fuels, it was found that the annual electricity production of the dish-Stirling system operating in solar mode can be increased by between 47% and 78% when hybridized. This would correspond to an increase in generation efficiency ranging from 4% to 16%. Finally, assuming that the dish-Stirling system is hybridized with renewable combustible gases, this would result in avoided CO2 emissions of between approximately 1594 and 3953 tons over the 25-year lifetime of the examined plant.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference49 articles.

1. Renewable Power,2021

2. Renewable Capacity Statistics 2021,2021

3. Concentrating Solar Power

4. The Solar Resource and Meteorological Parameters

5. Concentrating solar power

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3