State of the Art of Renewable Sources Potentialities in the Middle East: A Case Study in the Kingdom of Saudi Arabia

Author:

Di Lorenzo Gianfranco1ORCID,Stracqualursi Erika1ORCID,Vescio Giovanni2,Araneo Rodolfo1ORCID

Affiliation:

1. Electrical Engineering Division of DIAEE, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

2. Technip Energies, Viale Castello della Magliana 68, 00148 Roma, Italy

Abstract

The Kingdom of Saudi Arabia is experiencing a surge in electricity demand, with power generation increasing 4 times in 25 years from 1990 to 2014. Despite the abundant primary renewable energy sources, the country has overlooked them in the past in national energy policies. However, in recent years, renewable energy has become a part of the Kingdom of Saudi Arabia’s energy conservation policy due to climate changes, technological progress, economies of scale, and increased competitiveness in supply chains. The Saudi government has created the King Abdullah City for Atomic and Renewable Energy (KACARE) to develop national strategies for effectively utilizing renewable and nuclear energy. This paper reviews the current state of the art of the renewable energy technologies available on the market and evaluates the installation of renewable energy plants near Saudi Arabia’s East Coast for a new town, focusing on technical rather than economic aspects. The paper provides a wide review of the possible technical solutions to exploit the producibility of different renewable sources, considering the challenging climate conditions typical of desert areas. The analysis of a real case study shows a high availability of wind and solar irradiance that allow a net energy production of 354 and 129 GWh, respectively. In addition, the comparison between a typical ground-mounted photovoltaic (PV) system and an emerging floating PV reveals that for the same installed power, occupied area, and environmental conditions, the latter has a 4% greater performance ratio due to the cooling effect of water.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3