Shear Rate Coat-Hanger Die Using Casson Viscosity Model

Author:

Igali Dastan,Perveen AsmaORCID,Zhang DichuanORCID,Wei DongmingORCID

Abstract

Coat-hanger die design aims for optimization of the die geometry of the body and the flow distribution manifold, such that through the exit at the die lip homogeneous distribution of the polymer melt is achieved. This paper proposes a novel methodology for deriving the design equations of the coat-hanger die geometry for some specific extrusion materials and provides fluid–solid interaction simulations for validations. The basis for the calculations is the Casson rheological model, analytic velocity profiles for the pseudoplastic flow through circular pipe and slit, and the constant shear rate coat-hanger die design methodology developed by Winter and Fritz. The geometry obtained was then evaluated using the fluid-structure interaction numerical simulation approach. The sensitivity of the outlet velocity uniformity and die body deformation due to the material and mass flow rate change were investigated using the finite element software, Ansys. It was found that the homogeneity of the outlet velocity is very sensitive to the extrusion materials. The structural analysis of the solid die body also resulted in higher deformations when using some other extrusion materials different from the initial design. Mass flow rate increase only resulted in large zones of stagnation, which occurred around the melt as it passes from the manifold to the slit region. Therefore, it is recommended to define the required range of mass flow rate to prevent the formation of stagnation zones.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference21 articles.

1. Three-dimensional nonisothermal simulation of a coat hanger die

2. Geometry design of a coat-hanger die with uniform flow rate and residence time across the die width

3. Die Designs;Chung,2019

4. A Comparative Study of Viscous Flow in Slit-Exit Cross Section Dies Using Network Analysis;Kopplmayr;J. Plast. Technol.,2012

5. Flat Film and Sheet Dies;Vlachopoulos,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3