Itaconate Based Elastomer as a Green Alternative to Styrene–Butadiene Rubber for Engineering Applications: Performance Comparison

Author:

Li Liwei,Ji Haijun,Yang Hui,Zhang Liqun,Zhou XinxinORCID,Wang Runguo

Abstract

In response to increasingly stringent requirements for the sustainability and environmental friendliness of the rubber industry, the application and development of bio-based elastomers have received extensive attention. In this work, we prepared a new type of bio-based elastomer poly(dibutyl itaconate-butadiene) copolymer (PDBIB) nanocomposite using carbon black and non-petroleum-based silica with a coupling agent. Using dynamic thermodynamic analysis (DMTA) and scanning electron microscope (SEM), we studied the effects of feed ratio on dynamic mechanical properties, micro morphology, and filler dispersion of PDBIB composites. Among them, silica-reinforced PDBIB60 (weight ratio of dibutyl itaconate to butadiene 40/60) and carbon black-reinforced PDBIB70 (weight ratio of dibutyl itaconate to butadiene 30/70) both showed excellent performance, such as tensile strength higher than 18 MPa and an elongation break higher than 400%. Compared with the widely used ESBR, the results showed that PDBIB had better rolling resistance and heat generation than ESBR. In addition, considering the development of green tires, we compared it with the solution polymerized styrene–butadiene rubber with better comprehensive performance, and analyzed the advantages of PDBIB and the areas to be improved. In summary, PDBIB prepared from bio-based monomers had superior performance and is of great significance for achieving sustainable development, providing a direction for the development of high-performance green tire and holding great potential to replace petroleum-derived elastomers.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3