Preparation and intermolecular interaction of bio-based elastomer/hindered phenol hybrid with tunable damping properties

Author:

Zhou Xinxin,Cai Lesi1,Lei Weiwei,Qiao He,Liu Chaohao,Zhao Xiuying,Chen Jianfeng2,Wang Runguo,Zhang Liqun

Affiliation:

1. 2Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China

2. 1State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

AbstractIn this research, crosslinked hybrids of a newly invented bio-based elastomer poly(di-isoamyl itaconate-co-isoprene) (PDII) and 3,9-bis[1,1-dimethyl-2{β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro[5,5]-undecane (AO-80) were designed and prepared by the mechanical kneading of the PDII/AO-80 hybrids at a temperature higher than the melting point of AO-80, followed by the crosslinking of PDII during the subsequent hot-pressing/vulcanization process. The microstructure, morphology, and mechanical properties of the hybrids were systematically investigated in each preparation stage by using DSC, FTIR, XRD, SEM, DMTA, and tensile testing. Part of the AO-80 molecules formed an AO-80-rich phase, but most of them dissolved in the PDII to form a very fine dispersion in amorphous form. The results of FTIR and DSC indicated that strong intermolecular interactions were formed between the PDII and the AO-80 molecules. Each PDII/AO-80 crosslinked hybrid showed a single transition with a higher glass transition temperature and significantly higher loss value (tan δ) than the neat PDII because of intermolecular interactions between the PDII and the AO-80 molecules. For instance, tan δ of PDII/AO-80 consisting of 100 phr AO-80 achieved 2.6 times as neat PDII. The PDII/AO-80 crosslinked hybrids with applicability at room temperature are potential bio-based damping materials for the future.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3