Affiliation:
1. 2Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
2. 1State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Abstract
AbstractIn this research, crosslinked hybrids of a newly invented bio-based elastomer poly(di-isoamyl itaconate-co-isoprene) (PDII) and 3,9-bis[1,1-dimethyl-2{β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro[5,5]-undecane (AO-80) were designed and prepared by the mechanical kneading of the PDII/AO-80 hybrids at a temperature higher than the melting point of AO-80, followed by the crosslinking of PDII during the subsequent hot-pressing/vulcanization process. The microstructure, morphology, and mechanical properties of the hybrids were systematically investigated in each preparation stage by using DSC, FTIR, XRD, SEM, DMTA, and tensile testing. Part of the AO-80 molecules formed an AO-80-rich phase, but most of them dissolved in the PDII to form a very fine dispersion in amorphous form. The results of FTIR and DSC indicated that strong intermolecular interactions were formed between the PDII and the AO-80 molecules. Each PDII/AO-80 crosslinked hybrid showed a single transition with a higher glass transition temperature and significantly higher loss value (tan δ) than the neat PDII because of intermolecular interactions between the PDII and the AO-80 molecules. For instance, tan δ of PDII/AO-80 consisting of 100 phr AO-80 achieved 2.6 times as neat PDII. The PDII/AO-80 crosslinked hybrids with applicability at room temperature are potential bio-based damping materials for the future.
Subject
General Chemical Engineering,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献